Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 625(7996): 679-684, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38267683

RESUMO

In conventional Bardeen-Cooper-Schrieffer superconductors1, electrons with opposite momenta bind into Cooper pairs due to an attractive interaction mediated by phonons in the material. Although superconductivity naturally emerges at thermal equilibrium, it can also emerge out of equilibrium when the system parameters are abruptly changed2-8. The resulting out-of-equilibrium phases are predicted to occur in real materials and ultracold fermionic atoms, but not all have yet been directly observed. Here we realize an alternative way to generate the proposed dynamical phases using cavity quantum electrodynamics (QED). Our system encodes the presence or absence of a Cooper pair in a long-lived electronic transition in 88Sr atoms coupled to an optical cavity and represents interactions between electrons as photon-mediated interactions through the cavity9,10. To fully explore the phase diagram, we manipulate the ratio between the single-particle dispersion and the interactions after a quench and perform real-time tracking of the subsequent dynamics of the superconducting order parameter using nondestructive measurements. We observe regimes in which the order parameter decays to zero (phase I)3,4, assumes a non-equilibrium steady-state value (phase II)2,3 or exhibits persistent oscillations (phase III)2,3. This opens up exciting prospects for quantum simulation, including the potential to engineer unconventional superconductors and to probe beyond mean-field effects like the spectral form factor11,12, and for increasing the coherence time for quantum sensing.

2.
Phys Rev Lett ; 126(17): 173601, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988424

RESUMO

We propose to simulate dynamical phases of a BCS superconductor using an ensemble of cold atoms trapped in an optical cavity. Effective Cooper pairs are encoded via the internal states of the atoms, and attractive interactions are realized via the exchange of virtual photons between atoms coupled to a common cavity mode. Control of the interaction strength combined with a tunable dispersion relation of the effective Cooper pairs allows exploration of the full dynamical phase diagram of the BCS model as a function of system parameters and the prepared initial state. Our proposal paves the way for the study of the nonequilibrium features of quantum magnetism and superconductivity by harnessing atom-light interactions in cold atomic gases.

3.
Nature ; 580(7805): 602-607, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32350478

RESUMO

Interactions between atoms and light in optical cavities provide a means of investigating collective (many-body) quantum physics in controlled environments. Such ensembles of atoms in cavities have been proposed for studying collective quantum spin models, where the atomic internal levels mimic a spin degree of freedom and interact through long-range interactions tunable by changing the cavity parameters1-4. Non-classical steady-state phases arising from the interplay between atom-light interactions and dissipation of light from the cavity have previously been investigated5-11. These systems also offer the opportunity to study dynamical phases of matter that are precluded from existence at equilibrium but can be stabilized by driving a system out of equilibrium12-16, as demonstrated by recent experiments17-22. These phases can also display universal behaviours akin to standard equilibrium phase transitions8,23,24. Here, we use an ensemble of about a million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model25,26, an iconic model in quantum magnetism, and report the observation of distinct dynamical phases of matter in this system. Our system allows us to probe the dependence of dynamical phase transitions on system size, initial state and other parameters. These observations can be linked to similar dynamical phases in related systems, including the Josephson effect in superfluid helium27, or coupled atomic28 and solid-state polariton29 condensates. The system itself offers potential for generation of metrologically useful entangled states in optical transitions, which could permit quantum enhancement in state-of-the-art atomic clocks30,31.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...